home *** CD-ROM | disk | FTP | other *** search
- /****************************************************************************
- * chi2.c
- *
- * This module contains the function for the chi square distribution.
- *
- * All functions in this module are taken from the Cephes math library.
- *
- * Cephes Math Library Release 2.0: April, 1987
- * Copyright 1984, 1987 by Stephen L. Moshier
- * Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- *
- * from Persistence of Vision(tm) Ray Tracer
- * Copyright 1996 Persistence of Vision Team
- *---------------------------------------------------------------------------
- * NOTICE: This source code file is provided so that users may experiment
- * with enhancements to POV-Ray and to port the software to platforms other
- * than those supported by the POV-Ray Team. There are strict rules under
- * which you are permitted to use this file. The rules are in the file
- * named POVLEGAL.DOC which should be distributed with this file. If
- * POVLEGAL.DOC is not available or for more info please contact the POV-Ray
- * Team Coordinator by leaving a message in CompuServe's Graphics Developer's
- * Forum. The latest version of POV-Ray may be found there as well.
- *
- * This program is based on the popular DKB raytracer version 2.12.
- * DKBTrace was originally written by David K. Buck.
- * DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins.
- *
- *****************************************************************************/
-
- #include "frame.h"
- #include "povproto.h"
- #include "chi2.h"
-
- /*
- Cephes Math Library Release 2.0: April, 1987
- Copyright 1984, 1987 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
-
- /*****************************************************************************
- * Local preprocessor defines
- ******************************************************************************/
-
- #define MAXLGM 2.556348e305
- #define BIG 1.44115188075855872E+17
- #define MACHEP 1.38777878078144567553E-17 /* 2**-56 */
- #define MAXLOG 8.8029691931113054295988E1 /* log(2**127) */
- #define MAXNUM 1.701411834604692317316873e38 /* 2**127 */
- #define LOGPI 1.14472988584940017414
-
-
-
- /*****************************************************************************
- * Local typedefs
- ******************************************************************************/
-
-
-
- /*****************************************************************************
- * Local variables
- ******************************************************************************/
-
- static int sgngam = 0;
-
- /*
- * A[]: Stirling's formula expansion of log gamma
- * B[], C[]: log gamma function between 2 and 3
- */
-
- static DBL A[] =
- {
- 8.11614167470508450300E-4,
- -5.95061904284301438324E-4,
- 7.93650340457716943945E-4,
- -2.77777777730099687205E-3,
- 8.33333333333331927722E-2
- };
-
- static DBL B[] =
- {
- -1.37825152569120859100E3,
- -3.88016315134637840924E4,
- -3.31612992738871184744E5,
- -1.16237097492762307383E6,
- -1.72173700820839662146E6,
- -8.53555664245765465627E5
- };
-
- static DBL C[] =
- {
- 1.00000000000000000000E0,
- -3.51815701436523470549E2,
- -1.70642106651881159223E4,
- -2.20528590553854454839E5,
- -1.13933444367982507207E6,
- -2.53252307177582951285E6,
- -2.01889141433532773231E6
- };
-
- /* log(sqrt(2pi)) */
-
- static DBL LS2PI = 0.91893853320467274178;
-
- /* sqrt(2pi) */
-
- static DBL s2pi = 2.50662827463100050242E0;
-
- /* approximation for 0 <= |y - 0.5| <= 3/8 */
-
- static DBL P0[5] =
- {
- -5.99633501014107895267E1,
- 9.80010754185999661536E1,
- -5.66762857469070293439E1,
- 1.39312609387279679503E1,
- -1.23916583867381258016E0,
- };
-
- static DBL Q0[8] =
- {
- /* 1.00000000000000000000E0,*/
- 1.95448858338141759834E0,
- 4.67627912898881538453E0,
- 8.63602421390890590575E1,
- -2.25462687854119370527E2,
- 2.00260212380060660359E2,
- -8.20372256168333339912E1,
- 1.59056225126211695515E1,
- -1.18331621121330003142E0,
- };
-
- /*
- * Approximation for interval z = sqrt(-2 log y ) between 2 and 8
- * i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14.
- */
-
- static DBL P1[9] =
- {
- 4.05544892305962419923E0,
- 3.15251094599893866154E1,
- 5.71628192246421288162E1,
- 4.40805073893200834700E1,
- 1.46849561928858024014E1,
- 2.18663306850790267539E0,
- -1.40256079171354495875E-1,
- -3.50424626827848203418E-2,
- -8.57456785154685413611E-4,
- };
-
- static DBL Q1[8] =
- {
- /* 1.00000000000000000000E0,*/
- 1.57799883256466749731E1,
- 4.53907635128879210584E1,
- 4.13172038254672030440E1,
- 1.50425385692907503408E1,
- 2.50464946208309415979E0,
- -1.42182922854787788574E-1,
- -3.80806407691578277194E-2,
- -9.33259480895457427372E-4,
- };
-
- /*
- * Approximation for interval z = sqrt(-2 log y ) between 8 and 64
- * i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.
- */
-
- static DBL P2[9] =
- {
- 3.23774891776946035970E0,
- 6.91522889068984211695E0,
- 3.93881025292474443415E0,
- 1.33303460815807542389E0,
- 2.01485389549179081538E-1,
- 1.23716634817820021358E-2,
- 3.01581553508235416007E-4,
- 2.65806974686737550832E-6,
- 6.23974539184983293730E-9,
- };
-
- static DBL Q2[8] =
- {
- /* 1.00000000000000000000E0,*/
- 6.02427039364742014255E0,
- 3.67983563856160859403E0,
- 1.37702099489081330271E0,
- 2.16236993594496635890E-1,
- 1.34204006088543189037E-2,
- 3.28014464682127739104E-4,
- 2.89247864745380683936E-6,
- 6.79019408009981274425E-9,
- };
-
-
- /*****************************************************************************
- * Static functions
- ******************************************************************************/
-
- static DBL igami PARAMS((DBL a, DBL y0));
- static DBL lgam PARAMS((DBL x));
- static DBL polevl PARAMS((DBL x, DBL * coef, int N));
- static DBL p1evl PARAMS((DBL x, DBL * coef, int N));
- static DBL igamc PARAMS((DBL a, DBL x));
- static DBL igam PARAMS((DBL a, DBL x));
- static DBL ndtri PARAMS((DBL y0));
-
-
-
- /* chdtri()
- *
- * Inverse of complemented Chi-square distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * DBL df, x, y, chdtri();
- *
- * x = chdtri( df, y );
- *
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the Chi-square argument x such that the integral
- * from x to infinity of the Chi-square density is equal
- * to the given cumulative probability y.
- *
- * This is accomplished using the inverse gamma integral
- * function and the relation
- *
- * x/2 = igami( df/2, y );
- *
- *
- *
- *
- * ACCURACY:
- *
- * See igami.c.
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * chdtri domain y < 0 or y > 1 0.0
- * v < 1
- *
- */
-
- DBL chdtri(df, y)
- DBL df, y;
- {
- DBL x;
-
- if ((y < 0.0) || (y > 1.0) || (df < 1.0))
- {
- Error("Illegal values fd=%f and y=%f in chdtri().\n", df, y);
-
- return (0.0);
- }
-
- x = igami(0.5 * df, y);
-
- return (2.0 * x);
- }
-
-
-
- /* lgam()
- *
- * Natural logarithm of gamma function
- *
- *
- *
- * SYNOPSIS:
- *
- * DBL x, y, lgam();
- * extern int sgngam;
- *
- * y = lgam( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the base e (2.718...) logarithm of the absolute
- * value of the gamma function of the argument.
- * The sign (+1 or -1) of the gamma function is returned in a
- * global (extern) variable named sgngam.
- *
- * For arguments greater than 13, the logarithm of the gamma
- * function is approximated by the logarithmic version of
- * Stirling's formula using a polynomial approximation of
- * degree 4. Arguments between -33 and +33 are reduced by
- * recurrence to the interval [2,3] of a rational approximation.
- * The cosecant reflection formula is employed for arguments
- * less than -33.
- *
- * Arguments greater than MAXLGM return MAXNUM and an error
- * message. MAXLGM = 2.035093e36 for DEC
- * arithmetic or 2.556348e305 for IEEE arithmetic.
- *
- *
- *
- * ACCURACY:
- *
- *
- * arithmetic domain # trials peak rms
- * DEC 0, 3 7000 5.2e-17 1.3e-17
- * DEC 2.718, 2.035e36 5000 3.9e-17 9.9e-18
- * IEEE 0, 3 28000 5.4e-16 1.1e-16
- * IEEE 2.718, 2.556e305 40000 3.5e-16 8.3e-17
- * The error criterion was relative when the function magnitude
- * was greater than one but absolute when it was less than one.
- *
- * The following test used the relative error criterion, though
- * at certain points the relative error could be much higher than
- * indicated.
- * IEEE -200, -4 10000 4.8e-16 1.3e-16
- *
- */
-
- static DBL lgam(x)
- DBL x;
- {
- DBL p, q, w, z;
- int i;
-
- sgngam = 1;
-
- if (x < -34.0)
- {
- q = -x;
- w = lgam(q); /* note this modifies sgngam! */
- p = floor(q);
-
- if (p == q)
- {
- goto loverf;
- }
-
- i = p;
-
- if ((i & 1) == 0)
- {
- sgngam = -1;
- }
- else
- {
- sgngam = 1;
- }
-
- z = q - p;
-
- if (z > 0.5)
- {
- p += 1.0;
-
- z = p - q;
- }
-
- z = q * sin(M_PI * z);
-
- if (z == 0.0)
- {
- goto loverf;
- }
-
- /* z = log(PI) - log( z ) - w;*/
-
- z = LOGPI - log(z) - w;
-
- return (z);
- }
-
- if (x < 13.0)
- {
- z = 1.0;
-
- while (x >= 3.0)
- {
- x -= 1.0;
-
- z *= x;
- }
-
- while (x < 2.0)
- {
- if (x == 0.0)
- {
- goto loverf;
- }
-
- z /= x;
-
- x += 1.0;
- }
-
- if (z < 0.0)
- {
- sgngam = -1;
-
- z = -z;
- }
- else
- {
- sgngam = 1;
- }
-
- if (x == 2.0)
- {
- return (log(z));
- }
-
- x -= 2.0;
-
- p = x * polevl(x, B, 5) / p1evl(x, C, 6);
-
- return (log(z) + p);
- }
-
- if (x > MAXLGM)
- {
- loverf:
- /*
- mtherr("lgam", OVERFLOW);
- */
- return (sgngam * MAXNUM);
- }
-
- q = (x - 0.5) * log(x) - x + LS2PI;
-
- if (x > 1.0e8)
- {
- return (q);
- }
-
- p = 1.0 / (x * x);
-
- if (x >= 1000.0)
- {
- q += ((7.9365079365079365079365e-4 * p -
- 2.7777777777777777777778e-3) * p +
- 0.0833333333333333333333) / x;
- }
- else
- {
- q += polevl(p, A, 4) / x;
- }
-
- return (q);
- }
-
-
-
- /* igamc()
- *
- * Complemented incomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * DBL a, x, y, igamc();
- *
- * y = igamc( a, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- *
- * igamc(a,x) = 1 - igam(a,x)
- *
- * inf.
- * -
- * 1 | | -t a-1
- * = ----- | e t dt.
- * - | |
- * | (a) -
- * x
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0,30 2000 2.7e-15 4.0e-16
- * IEEE 0,30 60000 1.4e-12 6.3e-15
- *
- */
-
- static DBL igamc(a, x)
- DBL a, x;
- {
- DBL ans, c, yc, ax, y, z;
- DBL pk, pkm1, pkm2, qk, qkm1, qkm2;
- DBL r, t;
- DBL rdiv;
-
- if ((x <= 0) || (a <= 0))
- {
- return (1.0);
- }
-
- if ((x < 1.0) || (x < a))
- {
- return (1.0 - igam(a, x));
- }
-
- ax = a * log(x) - x - lgam(a);
-
- if (ax < -MAXLOG)
- {
- /*
- mtherr("igamc", UNDERFLOW);
- */
- return (0.0);
- }
-
- ax = exp(ax);
-
- /* continued fraction */
-
- y = 1.0 - a;
- z = x + y + 1.0;
- c = 0.0;
-
- pkm2 = 1.0;
- qkm2 = x;
- pkm1 = x + 1.0;
- qkm1 = z * x;
-
- ans = pkm1 / qkm1;
-
- do
- {
- c += 1.0;
- y += 1.0;
- z += 2.0;
-
- yc = y * c;
-
- pk = pkm1 * z - pkm2 * yc;
- qk = qkm1 * z - qkm2 * yc;
-
- if (qk != 0)
- {
- r = pk / qk;
- t = fabs((ans - r) / r);
- ans = r;
- }
- else
- {
- t = 1.0;
- }
-
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
-
- if (fabs(pk) > BIG)
- {
- /*
- pkm2 /= BIG;
- pkm1 /= BIG;
- qkm2 /= BIG;
- qkm1 /= BIG;
- */
- rdiv = (1.0 / BIG);
- pkm2 *= rdiv;
- pkm1 *= rdiv;
- qkm2 *= rdiv;
- qkm1 *= rdiv;
- }
- }
- while (t > MACHEP);
-
- return (ans * ax);
- }
-
-
-
- /* igam.c
- *
- * Incomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * DBL a, x, y, igam();
- *
- * y = igam( a, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- * x
- * -
- * 1 | | -t a-1
- * igam(a,x) = ----- | e t dt.
- * - | |
- * | (a) -
- * 0
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0,30 4000 4.4e-15 6.3e-16
- * IEEE 0,30 10000 3.6e-14 5.1e-15
- *
- */
-
- /* left tail of incomplete gamma function:
- *
- * inf. k
- * a -x - x
- * x e > ----------
- * - -
- * k=0 | (a+k+1)
- *
- */
-
- static DBL igam(a, x)
- DBL a, x;
- {
- DBL ans, ax, c, r;
-
- if ((x <= 0) || (a <= 0))
- {
- return (0.0);
- }
-
- if ((x > 1.0) && (x > a))
- {
- return (1.0 - igamc(a, x));
- }
-
- /* Compute x**a * exp(-x) / gamma(a) */
- ax = a * log(x) - x - lgam(a);
-
- if (ax < -MAXLOG)
- {
- /*
- mtherr("igam", UNDERFLOW);
- */
- return (0.0);
- }
-
- ax = exp(ax);
-
- /* power series */
- r = a;
- c = 1.0;
- ans = 1.0;
-
- do
- {
- r += 1.0;
- c *= x / r;
- ans += c;
- }
- while (c / ans > MACHEP);
-
- return (ans * ax / a);
- }
-
-
-
- /* igami()
- *
- * Inverse of complemented imcomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * DBL a, x, y, igami();
- *
- * x = igami( a, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Given y, the function finds x such that
- *
- * igamc( a, x ) = y.
- *
- * Starting with the approximate value
- *
- * 3
- * x = a t
- *
- * where
- *
- * t = 1 - d - ndtri(y) sqrt(d)
- *
- * and
- *
- * d = 1/9a,
- *
- * the routine performs up to 10 Newton iterations to find the
- * root of igamc(a,x) - y = 0.
- *
- *
- * ACCURACY:
- *
- * Tested for a ranging from 0.5 to 30 and x from 0 to 0.5.
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0,0.5 3400 8.8e-16 1.3e-16
- * IEEE 0,0.5 10000 1.1e-14 1.0e-15
- *
- */
-
- static DBL igami(a, y0)
- DBL a, y0;
- {
- DBL d, y, x0, lgm;
- int i;
-
- /* approximation to inverse function */
- d = 1.0 / (9.0 * a);
- y = (1.0 - d - ndtri(y0) * sqrt(d));
-
- x0 = a * y * y * y;
-
- lgm = lgam(a);
-
- for (i = 0; i < 10; i++)
- {
- if (x0 <= 0.0)
- {
- /*
- mtherr("igami", UNDERFLOW);
- */
- return (0.0);
- }
-
- y = igamc(a, x0);
-
- /* compute the derivative of the function at this point */
- d = (a - 1.0) * log(x0) - x0 - lgm;
-
- if (d < -MAXLOG)
- {
- /*
- mtherr("igami", UNDERFLOW);
- */
- goto done;
- }
-
- d = -exp(d);
-
- /* compute the step to the next approximation of x */
- if (d == 0.0)
- {
- goto done;
- }
-
- d = (y - y0) / d;
-
- x0 = x0 - d;
-
- if (i < 3)
- {
- continue;
- }
-
- if (fabs(d / x0) < 2.0 * MACHEP)
- {
- goto done;
- }
- }
-
- done:
-
- return (x0);
- }
-
-
-
- /* ndtri.c
- *
- * Inverse of Normal distribution function
- *
- *
- *
- * SYNOPSIS:
- *
- * DBL x, y, ndtri();
- *
- * x = ndtri( y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the argument, x, for which the area under the
- * Gaussian probability density function (integrated from
- * minus infinity to x) is equal to y.
- *
- *
- * For small arguments 0 < y < exp(-2), the program computes
- * z = sqrt( -2.0 * log(y) ); then the approximation is
- * x = z - log(z)/z - (1/z) P(1/z) / Q(1/z).
- * There are two rational functions P/Q, one for 0 < y < exp(-32)
- * and the other for y up to exp(-2). For larger arguments,
- * w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0.125, 1 5500 9.5e-17 2.1e-17
- * DEC 6e-39, 0.135 3500 5.7e-17 1.3e-17
- * IEEE 0.125, 1 20000 7.2e-16 1.3e-16
- * IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * ndtri domain x <= 0 -MAXNUM
- * ndtri domain x >= 1 MAXNUM
- *
- */
-
- static DBL ndtri(y0)
- DBL y0;
- {
- DBL x, y, z, y2, x0, x1;
- int code;
-
- if (y0 <= 0.0)
- {
- /*
- mtherr("ndtri", DOMAIN);
- */
- return (-MAXNUM);
- }
-
- if (y0 >= 1.0)
- {
- /*
- mtherr("ndtri", DOMAIN);
- */
- return (MAXNUM);
- }
-
- code = 1;
-
- y = y0;
-
- if (y > (1.0 - 0.13533528323661269189)) /* 0.135... = exp(-2) */
- {
- y = 1.0 - y;
- code = 0;
- }
-
- if (y > 0.13533528323661269189)
- {
- y = y - 0.5;
- y2 = y * y;
- x = y + y * (y2 * polevl(y2, P0, 4) / p1evl(y2, Q0, 8));
- x = x * s2pi;
-
- return (x);
- }
-
- x = sqrt(-2.0 * log(y));
- x0 = x - log(x) / x;
-
- z = 1.0 / x;
-
- if (x < 8.0) /* y > exp(-32) = 1.2664165549e-14 */
- {
- x1 = z * polevl(z, P1, 8) / p1evl(z, Q1, 8);
- }
- else
- {
- x1 = z * polevl(z, P2, 8) / p1evl(z, Q2, 8);
- }
-
- x = x0 - x1;
-
- if (code != 0)
- {
- x = -x;
- }
-
- return (x);
- }
-
-
-
- /* polevl.c
- * p1evl.c
- *
- * Evaluate polynomial
- *
- *
- *
- * SYNOPSIS:
- *
- * int N;
- * DBL x, y, coef[N+1], polevl[];
- *
- * y = polevl( x, coef, N );
- *
- *
- *
- * DESCRIPTION:
- *
- * Evaluates polynomial of degree N:
- *
- * 2 N
- * y = C + C x + C x +...+ C x
- * 0 1 2 N
- *
- * Coefficients are stored in reverse order:
- *
- * coef[0] = C , ..., coef[N] = C .
- * N 0
- *
- * The function p1evl() assumes that coef[N] = 1.0 and is
- * omitted from the array. Its calling arguments are
- * otherwise the same as polevl().
- *
- *
- * SPEED:
- *
- * In the interest of speed, there are no checks for out
- * of bounds arithmetic. This routine is used by most of
- * the functions in the library. Depending on available
- * equipment features, the user may wish to rewrite the
- * program in microcode or assembly language.
- *
- */
-
- static DBL polevl(x, coef, N)
- DBL x;
- DBL coef[];
- int N;
- {
- DBL ans;
- int i;
- DBL *p;
-
- p = coef;
- ans = *p++;
- i = N;
-
- do
- {
- ans = ans * x + *p++;
- }
- while (--i);
-
- return (ans);
- }
-
- /* p1evl() */
- /* N
- * Evaluate polynomial when coefficient of x is 1.0.
- * Otherwise same as polevl.
- */
-
- static DBL p1evl(x, coef, N)
- DBL x;
- DBL coef[];
- int N;
- {
- DBL ans;
- DBL *p;
- int i;
-
- p = coef;
- ans = x + *p++;
- i = N - 1;
-
- do
- {
- ans = ans * x + *p++;
- }
- while (--i);
-
- return (ans);
- }
-
-